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The purpose of statisitcal analysis is "to extract all the information from

observed data". The recorded data may have some defects such as recording errors
and outliers and the first task of a statistician is to scrutinize or corss-
examine the data for possible defects and understand its special features. The next
step is the specification of a suitable stochastic model for the data using prior
information and cross-validation techniques. On the basis of a chosen model,inferential analysis is made, which comprises of estimation of unknown parameters,

tests of hypotheses, prediction of future observations an ddecision making. Examin
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data under different possible models is suggested as more informative than using
robust procedures to safeguard against possible alternative models. Finally data.
analysis must also provide information for raising new questions and planning
future investigations. Some aspects of data analysis as outlined above are
illustrated through examples.

SAcoession For

NTIS GRA&I
DTIC TAB
Unannounced 3
Just ifietionB__ -___- _ ___ __--

Pistributlon/

Availability _odes

Avail and/or

Dist Special

Al .



STRATEGIES OF DATA ANALYSIS

C. Radhakrishna Rao
Center for Multivariate Analysis

University of Pittsburgh, Pittsburgh, PA 15260

1. Historical

Styles in statistical analysis change over time while the object of
"extracting all the information from data" or "summarization and exposure"
remains the same. Statistics has not yet aged into a stable discipline with
complete agreement on foundations. Certain methods become popular at one time
and are replaced in course of time by others which look more fashionable. In
spite of the controversies, the statistical methodology and fields of applica-
tions are expanding. The computer and more specifically the availability of
graphic facilities have had a greater impact on data analysis. It may be of
interest to briefly review some historical developments in data analysis.

It has been customary to consider descriptive and theoretical statistics
as two branches of statistics with distinct methodologies. In the former, the
object is to summarize a given data set in terms of certain "descriptive stat-
istics" such as measures of location and dispersion, higher order moments and
indices, and also to exhibit salient features of the data through graphs such
as histograms, bar diagrams and two dimensional charts. No reference is made
to t-he stochastic mechanism ('or probability distribution) which gave rise to
the observed data. The descriptive statistics thus computed are used to compare
different data sets. Even some rules are provided for the choice among alter-
native statistics, such as the mean, median and mode, depending on the nature
of the data set. Such statistical analysis is referred to as descriptive data
analysis (DDA). In theoretical statistics, the object is again summarization
of data, but with reference to a specified family of underlying probability
distributions. The summary or descriptive statistics in such a case heavily
depend on the specified stochastic model and their distributions are used to
specify margins of uncertainty in inference about the unknown parameters. Such
methodology is referred to as inferential data analysis (IDA).

Karl Pearson (K.P.) was the first to try to bridge the gap between DDA and
IDA. He used the insight provided by the descriptive analysis based on moments
and histograms to draw inference on the underlying family of distributions. For
this purpose he invented the first and perhaps the most important test criterm,
the chi-squared statistic, to test the hypothesis that the given data arose from
a specified probability distribution, which "ushered in a new sort of decision
making" [See Hacking (1984), where K.P.'s chi-squared is eulogized as one of
top 20 discoveries since 1900. Even R.A. Fisher (R.A.F.) expressed his apprec-
iation of K.P.'s chi-squared test in personal conversation with the author.)
K.P. also created a variety of probability distributions distinguishable by
four moments. A beautiful piece of research work done by K.P. through the use
of histograms and chi-squared test is the discovery that the distribution of the
size of bacteria found in a certain organism is a mixture of two normal dis-
tributions (see Pearson (1948)).

The need to develop general methods of estimation arose in extending the
chi-squared test to examine a composite hypothesis that the underlying distri-
bution belongs to a specified parameteric family of distributions. K.P. pro-
posed the estimation of parameters by moments and using the chi-squared test
based on the fitted distribution. Certain refinements were made by R.A.F both



in term of obtaining a better fit to given data through the estimation of un-
known parameters by the method of maximum likelihood and also in the exact use
of the chi-squared test using the concept of degrees of freedom when the un-
known parametars are estimated.

During the twenties and thirties, R.A.F. created an extraordinarily rich
array of statistical ideas. In a fundamental paper in 1922 he laid the found-
ations of "theoretical statistics", of analysing data through a specified sto-
chastic model. He developed exact small sample tests for a variety of hypo-
theses under normality assumption and advocated their use with the help of
tables of certain critical values, usually 5% and 1Z quantiles of the test
criterion. During this period, under the influence of R.A.F., great emphasis
was laid on tests of significance and numerous contributions were made by
Hotelling, Bose, Roy and Wilks among others to exact sampling theory. Although
R.A.F. mentioned specification, the problem first considered by K.P., as an
important aspect of statistics in his 1922 paper, he did not pursue the problem
further. Perhaps in the context of small data sets arising in biological re-
search which R.A.F. was examining, there was not much scope for investigating
the problem of specification or subjecting observed data to detailed descripti
analysis to look for special features or to empirically determine suitable
transformations of data to conform to an assumed stochastic model. R.A.F. used
his own experience and external information of how data are obtained in decid-
ing on specification. (See the classical paper by R.A.F. (1934) on the effect
of methods of ascertainment on the estimation of frequencies.] At this stage
of statistical developments inspired by R.A.F.'s approach, attempts were made
by others to look for what are called non-parametric test criteria whose dis-
tributions are independent of the underlying stochastic model for the data
(Pitman (1937)) and to investigate robustness of test criteria proposed by
R.A.F. for departures from normality of the underlying distribution.

The twenties and thirties also saw systematic developments in data collec-
tion through design of experiments introduced by R.A.F., which enabled data to
be analysed in a specified manner through analysis of variance and interpreted
in a meaningful way; design dictated the analysis and analysis revealed the design.

While much of the research in statistics in the early stages was motivated
by problems arising in biology, parallel developments were taking place in a
small scale on the use of statistics in industrial production. Shewhart (1931)
introduced simple graphical procedures through control charts for detecting
changes in a producticn process, which is probably the first contribution to
detection of outliers or change points.

Much of the methodology proposed by RA.F. was based on intuition, and no
systematic theory of statistical inference was available. This was supplied by
J. Neyman and E.S. Pearson in 1928 (see collected papers in 1966) by providing
some kind of axiomatic set up for deriving appropriate statistical methods,
specially in testing-of hypotheses, which was further pursued and perfected by
Wald (1950) as a theory for decision making. R.A.F. maintained that his meth-
odology was more appropriate in scientific inference while conceding that the
ideas of Neyman and Wald might be more revelant in technological applications,
although the latter claimed universal validity far their theories. Wald also
introduced sequential methods for application in sampling inspection, which
R.A.F. thought has applications in biology also.

The forties saw the development of sample surveys which involved collectien
of vast amounts of data by investigators by eliciting information from randomly
chosen individuals on a set of questions. In such a situation, problems such as



ensuring accuracy (free from bias, recording and response errors) and compara-
bility (between investigators and methods of enquiry) of data assumed paramount
importance. Kahalanobis (1931, 1944) was perhaps the first to recognize that
such errors in survey work are inevitable and could be more serious than sampl-
ing errors, and steps should be taken to control and detect these errors in
designing a survey and to develop suitable scrutiny programs for detecting
gross errors (outliers) and inconsistent values in collected data.

We have briefly discussed what is commonly believed to be two branches of
statistics, viz., descriptive and inferential statistics, and the need felt by
practicing statisticians to clean the data of possible defects which may vitiate
inferences drawn from statistical analysis. What was perhaps needed is an in-
tegrated approach, providing a proper understanding of the data, its defects and
special features, methods for selection of a suitable stochastic model or a
class of models for analysis of data to answer specific questions and to raise
new questions for further investigation. A great step in this direction was
made by Tukey (1962, 1973) in developing what is known as exploratory data anal-
ysis (EDA). The basic philosophy of EDA is to understand the special features
of data and to use robust inference procedures to accomodate for a wide class
of possible stochastic models for the data. Instead of asking the Fisherian
question as to what summary statistics are appropriate for a specified stoch-
astic model, Tukey proposed asking for what class of stochastic models, a given
summary statistic is appropriate.

In the present paper, I propose to discuss strategies of data analysis by
giving some examples. The scheme of data analysis proposed is exhibited in
Chart 1, which is based on my own experience in analysing large data sets and
which seems to combine K.P.'s descriptive, Fisher's inferential and Tukey's
exploratory data analyses and Mahalanobis' concern for non-sampling errors.

In Chart 1, data is used to represent the entire set of recorded measure-
ments (or observations) and how they are obtained, by an experiment, sample
survey or from historical records, and the operational procedures involved in
recording the observations, and any prior informatidd on the nature of data or
the stochastic model underlying the data.

Cross-examination of data (CED) represents whatever analysis is done to
understand the nature of the data, to find measurement and recording errors,
to detect outliers, to test validity of prior information and to examine whether
data are genuine or faked. The analysis is also intended to select a suitable
stochastic model or a class of stochastic models for further analysis of data.

Inferential data analysis stands for the entire body of statistical meth-
ods for estimation, prediction, testing of hypothesis and decision making based
on a specified stochastic model for observed data. The aim of data analysis
should be to extract all available information from data and not merely con-
fined to answering specific questions. Data often contain valuable information
to indicate new lines of research and to make improvements in designing future
experiments or sample surveys for data collection.

The sequence of data analysis indicated in Chart 1 as CED and IDA should
not be regarded as distinct categories with different methodologies. It only
shows what we should do to begin with when presented with data and in what form
the final results are expressed and used in practical applications. Some
results of IDA may suggest further CED, which in turn may indicate changes in
IDA.

Anil
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2. Cross-examination of data

Statisticians are often required to work on data collected by others. Such
data may contain recording errors, inconsistent or even faked values and out-
liers. There is also the possibility that the data were edited and some ob-

*servations were discarded and not put on record at the discretion of the ob-
:server. Some relevant factors for identification and classification of sampled
units might not have been recorded leading to clustering of data. Such defects
in data would vitiate inferential data analysis unless they are taken into
account and suitable modifications are made in data analysis. The process of
examining the data for such defects and special features or cross-examination
of data, which is "the first task of a statistician" as Fisher put it, is not a
routine matter although graphical representation of data through histograms,
two dimensional scatter plots and probability plots, and the computation of
certain descriptive statistics would be of great help. Much depends on the
nature of the data being examined and probing of the special features revealed
by graphical analysis or by visual examination. We consider some examples.



2.1. Editing, adjustinR and faking

Let us look at the following table which appears on page 74 of the book,
"Epidemiology, Man and Disease" by J.P. Pox, C.E. Hall and L.R. Elveback.

TABLE 5-1
Measles on the Faroe Islands in 1846. Attack rates and case fatality by age

Ao o NUMBER ATTACK NUMBER CASE

(YARS) POPULATION AUED RATE OF FATALITY
(YEARs) ATTACKED

(PER CENT) VEArIIS (PER CENt)

<I 198 154 77.8 44 28.6

1-9 1440 117 77.7 3 0.3
10-19 1525 1183 77.6 2 0.2
20-29 1470 1140 77.6 4 0.3
30-39 842 653 77.6 I0 1.5
40-59 1519 1178 77.6 46 3.9
60-79 752 583 77.5 46 7.9

80+ 18 92 78.0 15 16.3

Total 7864 6100 77.6 170 2.8

Source: Peter L. Panum. Observations Made During the Epidemic of Kleasles on
the Faroe Islands in the Year 1846. New York: Delta Omega Society, 1940, p. 82.

Notes by ihe editor (Dr. J. A. Doull) and translators (Ada Hatcher and Joseph Dirnont).

The authors conclude that "although the attack rates are high in all age grzps,

the fatality varied significantly, being highest under one year and then rising

steadily for those over age thirty." Is this conclusion valid?

What is of interest to note in the table is the almost uniform attack

rates of measles for all age groups (indicated by blocking). Could this occur

by chance even if the true attack rate is common to all age groups? There is a

strong suspicion that the number attacked in each age group was not observed

but reconstructed from the known population size of that age group by multiply-

ing it by the common overall attack rate of 6100/7864 = .776 and rounding off

Sto the nearest integer. Thus the figures 154 for age less than 1 and 92 for

over 58 could have been obtained as follows:

198 x .776 - 153.648 - 154; 118 x .776 = 91.568 - 92. (2.1.1)

Now, if we use these reconstructed numbers to calculate the attack rates we get

the values

154 - .7777 - .778; 9 _ 7796 - .780 (2.1.2)
198 118

as reported by the authors and also explains why the attack rates differ slightly

in the third decimal place. A reference to the original report by Panum in

German revealed that the number attacked was not originally classified by age
groups but the number attacked in each group was reconstructed in the manner

explained in the equation (2.1.1) by the editor of the English translation

assuming a uniform attack rate. The attack rates reported in the blocked

column of the above table are not found in the table on page 82 of the English

-- U ~ )



translation, which are probably computed by the authors of the book in the
manner explained in (2.1.2).- In view of this, the age specific fatality rates
computed from the reconstructed values of the number attacked in each group and
the consequent interpretation may not be valid. A statistician is often required
to do detective type workl (The second entry in the blocked column should be 77.61)

There are a number of papers starting with two early papers by Fisher
(1936) and Haldane (1948) describing statistical methods for examining whether
data are faked or not. Haldane has said, "Man is an orderly animal. He finds
it very hard to imitate the disorder of nature". Generally, faking may be
suspected when some regularity is observed in recorded data.

2.2. Measurement and recording errors, outliers

In any large scale investigation measurement and recording errors are
inevitable. It is difficult to detect them unless they appear as highly dis-
cordant values not in line with the others. Care should be taken to see in
designing an investigation that such errors are minimized. A built-in scrutiny
program while measurements are being made in the field might alert the inves-
tigator when a reading looks suspicious and allow him to repeat the measurement
and/or investigate whether or not the individUal being measured belongs to the
population under study.

The author had the opportunity to scrutinize vast amounts of data collected
in anthropometric surveys. In one case, the entire data collected at great
cost had to be rejected (see Mukherji, Rao and Trevor (1955)). When the number
of recording and measurement errors in multivariate response data is not large,
they could be detected by drawing histograms of individual measurements and
ratios, plotting two dimensional charts for pairs of measurements, and com-
puting the first four moments and measures of skewness and kurtosis, y, and y2.
Thete measures are specially sensitive to outliers.

TABLE I, TEST STATISTICS y, FOR SEWNERS AND ys FOR KUR'ORIs FOR ROME

ANTHROPOMETRIQ MEASUREMENTS OF SIX MALE TRIBAL POPULATIONS
(From the Thsis of Dr. Urmils P ingle)

male tribal populations

Charao. KOLAM KOYA MANNE MARIA RAJ GOND
ter 71 Y2 Yt Y2 Y1 Y1 Y1 7S 72 72

H.B. .15 -. 62 .39 .37 1.02* 4.54* -. 27 .48 -. 30 .23
.71* .29

H.L. % -. 14 -. 06 ,48 1.12 -. 05 -. 08 .06 -. 09 .-. 32 .28

Bg.B. .83' 2.93' .17 .19 1.72*. 8.42* -. 17 -. 63 -. 12 -. 61

-. 14 -. 03 -. 40 .27

T.F.L.. -. 26 -. 07 .44 .11 .60 .32 -. 05 -. 10 -. 04 -. 24

U.A.L. -. 05 -. 63 -1.95 6.88' --. 01 -. 27 .13 .76 .14 -. 40
-. 30 .74

L.A.L. -2.17* 9.98* -. 07 .59 .19 -. 7 -. 02 .28 -. 06 --. 67

.08 -. 62

The values in the soond line for each oharacter are calculated after omitting extrome

oLservations.

Table 1 gives the values of y, and y2 computed from the original data and after

removing extreme values for a number of characteristics for different populations
sampled. The sample size for each group was of the order of 50, and asterisks



indicate significance at the 5Z level. It is seen that the recomputed values
of Y and Y2, after omitting one extreme value in each case, are in conformity
with others.

Normal probability plots are recommended for testing departures from norm-
ality and detecting outliers. Some of these including the method of fractile
graphical analysis with independent subsamples are described in Section 9.2 of
Rao, Mitra, Matthai and Ramamurthy (1973). An alternative method which has
other potentialities is as follows. Let Y' - (y,...,y n be the vector of order

statistics in a sample of size n. Further let

= (Cl,...,c) = E(YI), V - E(YY')

when the parent population from which the sample is drawn is N(0,1). Then

E(Y) - 0 + ac, c; ,...,

and the graph of (y1 ,c4), i 1 1,...,n, should be close to a straight line. The
griiph may show departures of various kinds. There may be extreme values which
do not conform to the straight line trend exhibited by the bulk of the data. In
such a case, we may omit the extreme values below and above, consider the linear
model

- p + oc i + 6i, 1 - r,r+l,...,r+s; cov(6i64 ) - a2V j, i, j - r,...,r+s
(2.2.1)

and estimate p and a by using the Gauss-Markoff theorem with a given variance-
covariance matrix for the errors. There may be other types of departures
indicating a non-linear relationship between yi and ci. In such a case we may
write the extended model

Y -cb + c 2b2 + 3b3 + a4b4 + ... + 6 (2.2.2)

where, with c' - (ci...'ci)p1 on
G 'V-co ' "l

-1 ED' 2 -2Ei' t2 - c V 1  c : - : - 1Q0 0O 1

and obtain estimates of the a-coefficients

&-b'V'1 Y/b'V 1 b ,V(& 2 bV1b
-J - j p _j aibV

2= - 2
by the Gauss-Markoff theorem. If we denote a E(yiy)2/(n-1), then

T2 " W1 = &2( V2S(Vb b)/Va2b 2 )i, T3 6 &3 (b V-
1 b/a, T4 - &4(b V'b 4) ft

provide test statistics for judging depatures from normality, of which T can be
recognized as the Shapiro-Wilk (1965) W statistic for normality test. High
values of T3 and T4 would indicate asymmetry and non-normal kurtosis respect-
ively. The reader is referred to Puri and Rao (1976) for further details on the
use of the statistics T2,T3 and T4 in detecting departures from normality.



2.3. Too much fuss about outliers?

In section 2.2, we have discussed about the appropriate methodology when
outliers are discovered. But omission of outliers or spurious observations may
result in loss of information in some cases as the following example shows.

Suppose we have N observations from a population with mean p and standard
deviation (s.d.) a giving a man value f, and M spurious observations from a
population with mean v and s.d. a giving a mean value 9. Let us ignore the fact
that arises from contaminating observations and estimate p by j = (NR+Mq)/
(N+M). Then denoting v - p 6o,

2 2 M262 2
iG-) a (1+ - ) < V(1) =-a

if 62 < M-1 + N- I which is always true when 6 < I amd M - I whatever N may be.
Thus under the mean sq~.ared error criterion, which is popular among statisticians,
it pays to include a spurious observation from a population whose mean may
differ by as much as one standard deviation from the parameter under estimationl
Such an improvement can be of considerable magnitude. in small, samples.

2.4. Non-response, a skeletal example

Missing values in a data set pose serious problems. It often happens that
the missing values have special characteristics and ignoring them may lead to
biased results. For instance, if we have a sample of skeletal material dug out
from graves, most of the skulls would be in a broken condition and only a sub-
set of the possible measurements on a skull could be taken on each specimen. On
a skull that is preserved intact, the four characteristics, C(cranial capacity),
L(length), B(breadth) and H(height), could be measured. On others, either none,
or only B, or B and H, or L, B and H could be measured depending on the extent
of breakage. The problem is to estimate the mean values and variances and co-
variances of C,L,B and H for the original population of skulls, some of which
are well preserved and others broken. It is the usual practice, as found in
published papers on skeletal studies, to estimate the mean value and variance
for each characteristic say, C, from the available measurements on C alone, and
the correlation between two characteristics say, C and L, from the available
measurements on C and L. An alternative method, which is reported even in a
recent paper, was to assume a joint density for the distribution of C,L,B and H,
derive the marginal density for each subset of the characteristics, write down
the likelihood for each specimen using the relevant marginal density and esti-
mate the unknown parameters by the method of maximum likelihood (m.l.) from the
joint likelihood of all the specimens. Such a procedure assumes that the sample
of skulls providing the measurements on any specified subset of C,L,B and H
constitutes a random sample from .the original population of skulls. This is
not generally true. For instance Rao and Shaw (1948) found that the skulls
which are well preserved (intact) have on the whole smaller measurements than
those that are broken, which shows that the well preserved skulls in the sample
are dn the whole smaller in size and could not be considered as a random sample
from the original population of skulls. What is our strategy in such a case?

We may assume that at least the sample of skulls providing the measurement
B only constitutesa random sample from the original population. The likelihood
for such a specimen is the marginal probability density of B. Then for a spec-
imen providing the measurements B and H, we consider the conditional probability-
density of H given B as its likelihood. Similarly we consider the conditional

wb 6L



likelihoods of L given B and H, and C given L, B and H, for the specimens with
measurements B,H,L and BH,L,C respecitvely. We can then estimate the unknown
parameters based on the product of the likelihoods and conditional likelihoods
appropriate to the observed specimens. If the joint distribution of B,H,L
and C is multivariate normal with the mean vector and the covariance matrix as

P PL and E . .

PC ( CB " a" °cc

then the method of estimation is as follows'. Let

; ) (1)
) bb

L(2) f(2) (2) (2) (2)
,bb , Sbh, Shh

L(3), f(3), i(3). s(3), (3), _,(3)
' ' bb ' bh ,..,s

Ai ;(4), R(4), i(4), -(4), s(4). ,(4) ,s(4),,s(4)
bb I b b "'"sic cc

be the means and covariances estimated from the samples providing measurements
on B alone, on B, H alone, ... and so on. The trends in the observed means

,..., ; j ,...,(4); ... will show whether the different types of

samples are homogeneous on the basis of which a decision could be taken to use
the actual likelihood or the conditional likelihood for each type of specimen.
In case it is decided to use conditional likelihoods in all cases the estimates
of the unknown parameters could be obtained as follows.

Let the regression equations and residual mean squares computed from
appropriate complete samples be

b a 1 ) , s

h a (2) + a (2)b
0 1ah.(b
( (3) + a (3)b + a(3)h S

a 0  a 1  ba 2  h *~

Sc,- a (4) + a (4) b + a ()h + a (4 ,
0 1 2  h~ 3  c., 5 ch t

and define the matrices

1 (2) /

-a 1 )  1 1|a (2)
A 1 a- 0

(4) (4) (4)1
3IFA



bb

S S h.b )
L.h,b Sc.t,h,b

Then the estimates of I and p are

I i - A-IS(A ' ) ' IP- I- •

2.5. Regression analysis

There is considerable literature on the subject of regression analysis
covering methods of estimation, detection of outliers and influential obser-
vations, selection of independent variables, transformation of variables and
non-linear regression. Any software program for regression currently available
has provision for computing the regression coefficients by a robust procedure,
plotting the residuals to detect outliers and influential observations and
revising the estimates of regression coefficients after possibly omitting some
observations. However, there are certain other methods of multivariate data
analysis which might be of use in examining in greater depth the nature of the
relationship between the dependent and independent variables. Let us represent
the data in a regression pr~blem by (Y:X) wheoe Y is a n-vector of dependent
variables and X is an nxp matrix of independent "variablesi all expressed as
deviations from the corresponding averages. Further let S - X'X, T - (Y:X)'
(Y:X), hi . XIS'X 1i, where Xi is the i-th raw of X and ri be the residual

(observed minus fitted value) at the i-th data point. Then the following
analyses are suggested.
(i) Understanding the configuration of the independent variables: A cluster

analysis of the data sot X considered a n points in RP , with the norm of

x c Rp as (nx'S x)A, would show whether there are any gaps in the
configuration of X which are relevant far the interpretation of results.

(ii) Understanding the joint configuration of the independent and dependent
variables: A cluster analysis of the data set (Y:X) considered as n

points in RP+ l, with the norm of x c Rp+ a as (nx'T'Ix)|, would show
whether the data break up into several clusters requiring a different
regression function for each cluster. Other norms could also be tried.

(til) Generally the residuals r are plotted against the serial number i or
the fitted values yi. It will be of help in interpretation of data to

plot reagainst Vi:W as all the residuals in any coluzn will then
have te same standaid error. Further, the graphs of actual residuals
or Jack-knife residuals.(calculated by leaving one out) will be similar.
Again the whole configuration of residuals has to be examined to get a
complete story and not merely looking for extreme values.

2.6. Graphical techniques

Portraying data graphically certainly contributes toward a clearer and
more penetrative understanding of data and often provides clues for choosing
appropriate stochastic models for inferential data analysis. With the sophis-
ticated computer graphic facilities now available, the statistician is able to

9



look at many plots during the statistical analysis and thus interact with data

in a more effective way. Gnanadesikan (1977) describes a variety of graphical
representations of multiresponse data, to test for multivariate normality, to
detect outliers and to determine clusters. More tecently, other types of graph-
ical representations such as correspondence analysis (Benzecri and Benzecri
(1980)), and projection pursuit (Friedman and Tukey (1974)) have been introduced
which are receivingwide applications. The possibility of plotting higher
dimensional data in a lower dimensional space as an aid in cluster analysis was!

first demonstrated in Rao (1948).

A word of caution is necessary in interpreting sqch a graphical representA-
tion of higher dimensional data in a lower dimensional space (see Rao (1971)).

IThere isbound to be'some-distortion of relationships between units (or indiv-
iduals) in such a representation. Any cluster of units that emerges from the
graph has to be re-examined on the basis of the actual inter-unit distances in
the original space. It may so happen that all the units in the observed

i-cluster are not close to each other and they have to be divided into further
* clusters on the basis of differences in-dimensions not represented in the graph.

~K e

E.d.! *

Mon

Figure 1. The vertices represent different castes studied
in the Segal Anthropometric Survey and the numbers represent
Hahalanobis distances.: (See Majumdar andRao (1958)).

Since the fifties many methods of cluster analysis have been developed.
Most of them end up with a dendrogram which provides distinct clusters of units
at different levels of cluster distances. In practice distinct clusters rarely
exist and the interrel#tionships between units are usually complicated. I have
advocated listing of clusters of units, which may be overlapping, such that the
units within a cluster have similarity coefficients less than a chosen threshold
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value. Such lists can be made at different threshold values. A listing of
clusters at any threshold value can be represented as a graph with complete

isubgraphs (shown in Figure 1) where the vertices represent the units and all
the vertices with distances less than a specified threshold value are connected.
Such a figure has more information thagaa dendrogram. For instance the central
positions occupied by the units Mm y , N and No could not have been inferred
from a dendrogram where they would have been classified with some clusters at
some level of dissimilarity.

Listing of complete subgraphs at different threshold values can be time
consuming if the number of units is large. The best strategy is first to de-
termine broad clusters at a fairly high inter-cluster distance using a dendrcg=-
and attempt a detailed study within each such cluster by the complete subgraph
method.

3. Specification

Specification is the choice of a stochastic model in terms of which the
observed data is analyzed, uncertainties in estimates of unknown parameters and
tests of hypotheses are expressed and future observations are predicted. A
chosen stochastic model, which may be called a working model, may not include
the probability distribution (p.d.) which generated the observed data; this
constitutes specification error. Then we have the problem of estimating the
unknown parameters in a chosen model on the basis of given data and thus iden'-
tifying a. particular p.d. as close to or an estimate of the true p.d.; this process
Involves estimation error. Usually the specification and estimation errors
balance each other so that a finer specification may not necessarily yield
better results.

It should also be borne in mind that specification can depend on the pur-
pose for which data analysis is uhdertaken. It is quite possible that differ-
ent specifications for the same data have to be used for answering different
questions.

How do we choose between competing models for a specified purpose? Several
model selection criteria have been proposed (as the maximum likelihood principle
does not provide a satisfactory answer) such as Akaike's information criterion,
which are more appropriate in large samples where the specified purpose may not
play a dominant role. However, in small samples a more appropriate method
seems to be corss-validation as illustrated in the following Sections 3.1 and
3.2with reference to a particular data set.

3.1. Cross-validation.

It is a technique by which a choice can be made between competing models
by assessing the loss involved in using an estimated probability distribution.
The idea is an old one which was used in testing models for weather prediction
in the twenties. The data are subdivided into two parts: the first part is
used to fit the model, and the second to validate it. It is only recently that
the method has been modified, endowed with a suitable theory and successfully
applied in many areas of research (Mosteller and Tukey (1968) and:Stone (1974)).

An important application of cross-validation is in the selection of vari-
ables in multiple regression analysis. Let E(Y) - X(s)P(s 7 be the linear model

based on a subset (s) out of the p independent variables available. We compute
the Jack-knife residual



r X() (3.1.1)ri(s) =Yi - i(s) (S)

where () is estimated by omitting the i-th data point. Then the cross-valid-

ation error in prediction based on the specified subset of independent variables
is

CVE(s) i(s) (3.1.2)

For different choices of subsets of the variables we compute (3.1.2) and
choose that subset for which it is a minimum. Finally, for prediction purposes
we estimate the regression coefficients based on the chosen subset of the
variables using all the data points.

What is of interest in the above method is that we need not take the summaatin
over all n data points as done in (3.1.2). If future prediction is needed in
a specified region of the independent variables, we need only take the summation
over those data points for which the observed independent variables are close
to the specified region. The selected subset of independent variables may then
depend on the specified region of the- independi variables for future prediction.

3.2. A prediction problem

We shall use the cross-validation technique in deciding on a suitable rule
for predicting the seventh measurement Y7 (the weight of a mouse at the seventh
period) given the previous measurements Y,, ... 0Y6 (the weights taken at 6 pre-
vious periods). We have data on all the seven measurements for 13 mice on the
basis of which we wish to determine the prediction formula (Rao (1987) gives
the original measurements). The following formulas are tried.

1. Direct regression of y7 on the subsets of previous measurements y -y

y2 -y6, y3-y6, y4-y6, y5-y6 and y6 , using 
the least squares method of estimation.

2. Inverse regression method which predicts Y7 as

Y7 " +
7 (1-R )+R y7

where R7 is the sample average of Y7, R is the multiple correlation of Y7 on
subsets of yl-y 6, and '7 is the direct regression of Y7 on subsets of yl-y 6.

3. A polynomial of a suitable degree is fitted to the first six or sub-
sets of measurements of each mouse and the seventh value is predicted by
extrapolation.

4. Regression of y7 on the predicted value in (3) above. This provides
some kind of calibration of the value in (3).

5. Empirical Bayes predictor using polynomial regression in (3). The
polynomial regression coefficients are considered as random variables with a
prior distribution function which can be estimated from the data as shown in
Rao (1975).

6. Principal component regression using the first few principal compon-
ents. The -first six measurements are replaced by their principal components
and the regression of Y7 on the first few principal components is computed.



7. Factor analytic regression using the first few factors. A model of
the form

Yi W ai1 f1 + .. + aik fk + ei' V(6i) - a , i - 1,...,7,

is fitted to the entire data using all the seven variables, where a are factor
loadings and f are factors. For prediction in a future case, the jfactor
values are estimated on the basis of the first six observations, considering the
estimated aij as fixed, and substituted in the seventh equation topredict y7.

The CVE's in all the cases are reported in Table 3. It is interesting to
note that for purposes of prediction, much of the information is contained in
the previous one or two measurements and modelling for the growth curve over the

whole observed period for extrapolation introduces more noise in prediction.
This shows that in problems of prediction greater attention should be given to
obtaining a good fit in the neighborhood of the predictor values at which
future prediction is required.

TABLE 3. CVE of different predictors for Y7 (Mice data, n=13)

Previous Regression of Y7  Polynomial regression
values
used direct indirect degree indiv. calib- empirical

regression rated Bayes
predictor value

yl-y 6  .095 .103 5 7.472 .252 -

4 .600 .235 .375

3 .175 .093 .139

2 .104 .037 .087

1 .206 .035 .194

y2 Y6  .079 .081 4 2.405 .235 -

3 .241 .141 .174

2 .095 .040 .075

1 .158 .035 .143

y3-y 6  .047 .048 3 .757 .192 -

2 .096 .052 .069

1 .111 .034 .097

y4-y6  .037, .040 2 .229 .094 -

1 .066 .034 .054

y5-Y6 .031 .034 1 .055 .033 -

Y6 .027 .028 - - -

Principal component regression using all the measurements yl-y 6 and first k
principal components; .038 for k-i, .048 for k-2. Factor analytic regression
using all the measurements yl-y 7 and first k factors: .038 for k-1, .062 for k-2.



4. Inferential data analysis and some closing remarks

Inferential data analysis refers to the statistical methodology, based on
a specified underlying stochastic model, for estimating unkpown parameters,
testing of hypotheses, prediction of future observations, making decisions etc.
The choice of a model may depend on the specific information we are seeking
from data. It may not necessarily be the one which explains the whole observed
data as we saw in the problem of prediction (Section 3.2) using growth data.

Data analysis for answering specific questions raised by customers is not
the only task of a statistician. A wider analysis for understanding the nature
of given, data would be of use in looking for -other interesting questions
which can be answered with available data, in raising new questions and in
planning future investigations.

It Is also a good practice to analyse given data under different alternativ
stochastic models and to examine differences in conclusions that emerge. Such a
procedure may be more illuminating than seeking for robust inference procedures

'to safeguard against possible alternative stochastic models. The possibility
of using different models for the sam data to answer different questions should
be explored.

Inferential data analysis should be of an interactive type as new features
of the data may emerge during the analysis under a specified model requiring a
change in the analysis originally contemplated.

Simulation studies toa mess the performance of certain procedures and
bootstrap and Jack-knife techniques for estimating. variances of estimators (Efron
(1979)) under complicated data structures, which depend on the heavy use of
computers, have given additional dimensions to data analysis, although some
caution is needed in interpreting the results of such analyses.

There is the usual dictum in inferential data analysis that once the
Ivalidity of a model is assured, there is an optium way of analysing the data
such as the use of I as an estimate of the mean of a normal population based on
a given sample, or of the mean of a finite population based on a random sample
without replacement. As an example of the latter case, suppose that the problem

Sis that of estimating the average yield of trees planted in a row by taking a
sample of size 3. Our prescription says that if x1, x., x3 are the observed
yields on three randomly chosen trees, then a good esttmate is A - (xI+x 2+x3 )/1

.However, if after drawing the sample we find that two of the trees chosen are
next to each other with the corresponding yields, say x1 and x , then we may be
better off in giving the alternative estimator ' - (y+ )/2 wiere y -
(xl+x,)/2. It may be seen that if the yields of consecutive trees are highly
correlated, then the variance of ' is less than that of I in samples where at
least two consecutive trees are chosen. Such strategies as using different
methods for different configurations of the sample under the same stochastic
model should be explored. Another example of this type wis considered in (2.1.1).

As statisticians, we are asked to advise on the appropriate statistical
methodology (or software package program) for a certain data set. Our answer
should be: statistical treatment cannot be prescribed over the phone or bought
over the counter. The data has to be subjected to certain diagnostic tests and
i mmediate complications taken care of, and then a course of treatment is pre-
scribed and the progress is continuously monitored to decide on any changes in
treatment if needed.



* -Tepurpose of statistical analysis is, "to extract all the information
from observed dat .,. The recorded data may'have some defects such as recording
errors and outliers and the first task of a statistician is to scrutinize or
cross-examine the data for possible defects and understand its special features.
The next step is the specification of a suitable stochastic model for the data
using prior information and cross-validation techniques. On the basis of a
chosen model, inferential analysis is made, which comprises of estimation of
unknown paramters, tests of hypotheses, prediction of future observations and
decision making. Examtining data under different possible models is suggested
as more informative thwm using robust procedures to safeguard against possible
alternative models. Finally data analysis must also provide information.for
raising new questions and planning future investigations. Some aspects of data
analysis as outlined above are illustrated through egoples.

Risume

Las but de l'analyse statistique est "d'extraire touts 1 information o~tme

dans des donne" observees. Lee donn~ea enregistries peuvent cxontenir des erreurs
tallas quI' erreurs de transcription et valeurs. abpr).ates. La prismi-re tiche du
statisticien est do scrutiner at d'examiner las donn~es af in do diecter ces
erreurs et af in de comprendre las caractiristiques sp6ciales de ces donn~es.
L* itape suivante est I& specification d'un modile stochastique ad~tquat pour
les donnees en utilisant de l'information connue et des techniques de cross-
validation. A partir d'un modile choisi une analyse d'infirence est faite cc
qui inclus estimation do parametres inconnus, tests d hypotheses, pridiction
do futures observations at prise decision. Il ast propose, parc. que plus
* informatif, d'examiner las donnees sous diffirents modeles au lieu d'utiliser
des procidures robustes pour so protiger do possibles modiles alternatifs.
Finalement 1 analyse do donnies doit aussi procurer de Vinformation af in de
soulever do nouvelles questions at de planifier de futures investigations.
Certains des aspects de 1 analyse de donnies qui ont kt4 uentionnis ci-dessus
sont illustres a 1 aide d'exemples.
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